
Transformers for Dummies: A Peek Inside AI Models
Michiel Horstman
13 min read
·
Nov 13, 2024

Press enter or click to view image in full size

Made with ChatGPT

In less than a decade, transformers have revolutionized natural language processing (NLP), unlocking capabilities that were previously unimaginable. This neural network architecture swept aside traditional recurrent models
like RNNs and LSTMs, dramatically improving our ability to understand and generate human language. Transformers enable everything from highly accurate machine translation to sophisticated, large-scale text generation,
and they are the foundation of today’s most advanced large language models (LLMs), including GPT-4, BERT, and T5.

But what makes transformers so uniquely powerful? Unlike earlier models, transformers can process language in parallel rather than sequentially, allowing them to handle vast amounts of data and capture complex
relationships in language — all without losing track of long-range dependencies. This efficiency and flexibility have transformed NLP and laid the groundwork for breakthroughs across diverse fields, from computer vision to
protein folding in biology.

In this article, we’ll explore the core principles behind transformers, break down their innovative architecture, and show how they’re reshaping industries beyond NLP. By the end, you’ll understand why transformers are at
the heart of modern AI and how they continue to push the boundaries of what machines can learn and accomplish.

Transformer Architecture in LLMs: Encoder-Decoder Models and Beyond
The transformer architecture has fundamentally transformed large language models (LLMs), providing a versatile structure adaptable to a wide array of NLP tasks. Depending on the task at hand — whether it’s
understanding, generating, or translating text — LLMs utilize one of three main transformer configurations: encoder-only, decoder-only, and encoder-decoder models. Each setup has distinct strengths and is optimized for
specific applications. Here’s an overview of each architecture type, along with examples and typical use cases.

1. Encoder-Only Models (e.g., BERT)

Encoder-only models are designed primarily for understanding and representation tasks, where generating new text isn’t required. These models excel at capturing intricate relationships within the text by learning high-
quality embeddings of language data. Encoder-only models process input bidirectionally, allowing them to understand the context around each token by looking both forward and backward within a sentence.

Strengths: Exceptional at language comprehension and representation learning. The bidirectional processing enables the model to discern complex relationships between words, providing a deeper understanding of
context.

https://michielh.medium.com/?source=post_page---byline--57626643fd49---------------------------------------
http://chat.com/

Applications: Ideal for tasks that require analyzing or classifying text, such as:
Sentence Classification: Determining the sentiment, topic, or intent of a sentence.
Sentiment Analysis: Evaluating whether a piece of text expresses positive, negative, or neutral sentiments.
Named Entity Recognition (NER): Identifying entities like people, organizations, and locations within the text.
Question Answering: Finding relevant answers to questions based on text input.
Real-World Example: BERT (Bidirectional Encoder Representations from Transformers) is widely used in search engines, helping improve relevance by analyzing the context of user queries to deliver more accurate
results.

2. Decoder-Only Models (e.g., GPT Series)

Decoder-only models, like the GPT (Generative Pre-trained Transformer) series, are optimized for generative tasks. Unlike encoder-only models, decoder-only architectures are unidirectional, processing tokens sequentially
from left to right. This design is ideal for tasks that require predicting the next word or token in a sequence, ensuring that generated text is coherent and contextually appropriate.

Strengths: Built specifically for text generation, these models excel at creating fluid, logical continuations of a prompt. They are particularly effective for tasks that need sequential prediction, which is key to producing
natural, flowing language.
Applications: Commonly used in tasks that require generating new text, such as:
Conversational AI: Powering chatbots and virtual assistants with human-like dialogue.
Creative Writing: Assisting in writing stories, poems, or other forms of creative content.
Content Generation: Generating articles, social media posts, or summaries based on a brief or prompt.
Code Generation: Converting natural language descriptions into executable code.
Real-World Example: GPT models, like ChatGPT, are widely used in chatbots and virtual assistants to produce contextually relevant responses that align with the conversation history, delivering an engaging user
experience.

3. Encoder-Decoder Models (e.g., T5)

Encoder-decoder models combine both encoder and decoder stacks, making them exceptionally versatile. This architecture is designed for tasks where an input sequence needs to be transformed into a specific output
sequence, such as translation, summarization, or paraphrasing. In these models, the encoder processes the input to create a rich representation, which is then passed to the decoder to generate the desired output.

Strengths: Versatile and flexible, encoder-decoder models can handle a variety of tasks that require both understanding the input context and generating coherent output. This setup makes them robust for tasks that
involve complex input-output mappings.
Applications: Suitable for a range of NLP applications, including:
Machine Translation: Translating text from one language to another (e.g., English to French).
Text Summarization: Condensing lengthy articles or documents into shorter summaries.
Text-to-Text Transformations: Tasks like rephrasing sentences, generating questions from statements, or filling in missing parts of a text.
Real-World Example: T5 (Text-To-Text Transfer Transformer) is renowned for its ability to handle multiple NLP tasks within a single unified framework. By casting every problem as a text-to-text transformation, T5
can seamlessly switch between tasks, making it a versatile tool for diverse NLP applications.

Summary Table
Model Type	Example(s)	Architecture	Strengths	Key Applications	
Encoder-Only	BERT	Bidirectional Encoder	Deep language comprehension and representation learning	Sentence classification, sentiment analysis, NER, question answering	
Decoder-Only	GPT Series	Unidirectional Decoder	Text generation and smooth sequential prediction	Conversational AI, creative writing, content generation, code generation	
Encoder-Decoder	T5	Encoder-Decoder Stack	Versatility in input-output mapping	Machine translation, text summarization, text-to-text transformations	

How Transformers Work in LLMs
Understanding how transformers process and generate language is essential for appreciating their capabilities in large language models (LLMs). Here’s a breakdown of the key steps involved:

Tokenization and Embedding:

Tokenization: The text is first divided into smaller units called tokens, which may represent whole words, subwords, or even characters. Tokenization enables the model to handle various input formats and languages
effectively, capturing nuances down to the smallest components.

Press enter or click to view image in full size

Embedding: Each token is then mapped to a high-dimensional vector, called an embedding. These embeddings capture semantic information about the token, such as similarities with other tokens (e.g., “king” and
“queen” are closer in embedding space than “king” and “car”). This process provides the model with a meaningful numeric representation of each token.

Adding Positional Encodings:

Transformers process tokens in parallel, which means they lack any inherent notion of sequence order. To address this, a positional encoding vector is added to each token’s embedding. These positional encodings use
sine and cosine functions to create a unique position-specific vector for each token, allowing the model to differentiate between tokens’ positions in the sequence.
Example: Positional encodings help the model distinguish between sentences like “The dog chased the cat” and “The cat chased the dog,” ensuring that word order affects meaning.

Self-Attention Computation:

The core of the transformer is the self-attention mechanism, which allows the model to weigh the importance of each token relative to every other token in the sequence. This helps the model understand relationships
and dependencies, regardless of token distance.
Q, K, and V Matrices: For each token, the model computes three vectors — Query (Q), Key (K), and Value (V) — by applying learned transformations. The attention score for each token pair is derived by taking the
dot product of the Q and K vectors, scaled and normalized via a softmax function. Finally, the V vectors are weighted by these scores, enabling each token to focus on the most relevant parts of the input sequence.

Multi-Head Attention and Feed-Forward Networks (FFNs):

Multi-Head Attention: To capture a range of linguistic patterns, the self-attention mechanism is replicated across multiple “heads.” Each head learns to focus on different relationships and dependencies — one may
attend to syntax, while another may capture broader context or semantic nuances.
Feed-Forward Networks: After the multi-head attention step, the model passes the tokens through a feed-forward neural network (FFN) to introduce non-linearity and refine the representations. This layer processes
each token independently, allowing it to capture complex, high-level abstractions in language.

Press enter or click to view image in full size

Stacking Layers:

Transformers consist of multiple stacked layers, each containing its multi-head attention and feed-forward components. As data moves through these layers, the model builds progressively more complex representations
of the input. Each layer enhances the model’s understanding of relationships across the sequence, enabling it to capture intricate patterns and subtleties in language.

Output Generation:

In LLMs focused on generative tasks (e.g., GPT series), the model generates language by predicting the next token based on the processed input. The model uses a softmax layer to compute probabilities over the entire
vocabulary, selecting the token with the highest probability as the next word. This process is repeated iteratively to generate coherent and contextually appropriate text.

LLM Visualization Tool

Explore a 3D animated visualization of a Large Language Model (LLM) with an interactive walkthrough. This tool provides an engaging way to understand the inner workings of LLMs, from tokenization and
embeddings to self-attention and output generation. Perfect for visual learners and anyone interested in deepening their understanding of AI models.

LLM Visualization

A 3D animated visualization of an LLM with a walkthrough.

bbycroft.net

Future Directions and Challenges in Transformer Research
As transformers continue to revolutionize NLP, several emerging research directions are focused on improving efficiency, scalability, and applicability across diverse fields. Below are some of the most promising areas of
research and development, with insights into their motivations, new techniques, and potential impact on real-world applications.

1. Sparse Attention Mechanisms

Motivation: Standard transformers face computational challenges when processing long sequences, as they scale quadratically with sequence length. Sparse attention reduces this complexity, focusing only on essential
tokens instead of all tokens in a sequence, which is ideal for long-form data.
New Developments: Techniques like SPARSEK Attention and SWAT (Scalable Window Attention-based Transformers) are making strides. SPARSEK uses a scoring mechanism to prioritize relevant tokens,
achieving linear time complexity with constant memory usage. SWAT, meanwhile, optimizes data flow for maximum memory reuse and compatibility with hardware accelerators like FPGAs.
Impact: Sparse attention is particularly valuable for applications that rely on extended context, such as document summarization, long-form text generation, and genomic sequence analysis. These techniques make
transformers more efficient, especially in handling large-scale data.

2. Linear Transformers

Motivation: Linear Transformers aim to replace the quadratic complexity of self-attention with linear complexity, enabling the processing of much longer sequences.
Innovations: Linear attention mechanisms, such as Latte and Performer, use kernel-based feature maps to approximate attention computations. These models achieve memory-efficient processing, allowing them to
handle sequences with tens of thousands of tokens while maintaining accuracy similar to standard transformers.
Advantages: Linear transformers excel in real-time applications where data arrives sequentially, such as speech recognition, time-series forecasting, and high-resolution video analysis. The reduced memory and
computational requirements make them suitable for scenarios where latency is critical.

3. Dynamic and Selective Sparsity in Transformers

Motivation: Dense feed-forward layers in transformers contribute significantly to computational cost. Dynamic sparsity selectively activates neurons based on input relevance, making the model more efficient during
decoding.
Recent Techniques: Sparse Feedforward Transformers employ selective sparsity, activating only the most relevant neurons for each token. A mechanism within the model identifies essential activations, reducing
redundancy and speeding up processing.
Use Cases: Dynamic sparsity is advantageous in time-sensitive applications such as dialogue systems and real-time translation. By reducing the active computation load, transformers can scale without a proportional
increase in resource demands, enhancing efficiency in production environments.

4. Multi-Modal Transformers

Overview: Expanding beyond NLP, multi-modal transformers are designed to process diverse data types — such as images, audio, and text — within a single model. These models integrate strengths from vision
transformers and NLP transformers, enabling the model to understand and respond to visual and textual inputs.
Recent Examples: Models like Perceiver and LLaVA incorporate various input tokens, such as image patches and text tokens, within a unified transformer framework. This allows for applications like autonomous
driving, robotics, and augmented reality, where multi-modal data integration is essential.
Challenges: Integrating different data types requires aligning and balancing modalities. Researchers are exploring fine-tuning techniques with minimal data for each modality, aiming to make multi-modal tasks more
efficient and adaptable to different data formats.

5. Energy-Efficient and Hardware-Optimized Transformers
Motivation: As transformers grow larger, their energy consumption and latency can become prohibitive. Hardware-optimized architectures aim to reduce these demands, making transformers more viable for
deployment on specialized hardware.

https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://bbycroft.net/llm?source=post_page-----57626643fd49---------------------------------------
https://arxiv.org/abs/2111.12763
https://arxiv.org/abs/2405.17025
https://arxiv.org/abs/2405.17025
https://arxiv.org/abs/2102.11174
https://t.co/s35KKaUKtN
https://arxiv.org/abs/2111.12763
https://arxiv.org/abs/2107.14795
https://www.microsoft.com/en-us/research/project/llava-large-language-and-vision-assistant/

Innovative Approaches: Techniques such as kernel fusion and input-stationary dataflow on FPGAs (used in models like SWAT) minimize off-chip memory access and improve data reuse, lowering energy demands.
Additionally, FlashAttention applies block-wise attention on GPUs, reducing data movement and speeding up training.
Impact: Energy-efficient optimizations make transformers deployable in resource-sensitive environments, including edge devices for IoT, mobile-based NLP tools, and real-time monitoring systems in healthcare
and security.

Use Cases:

These advancements in transformer technology enable applications across multiple domains:

Sparse Attention: Real-time language translation and document summarization with extended context.
Linear Transformers: Time-sensitive applications like live speech-to-text transcription and financial forecasting.
Dynamic Sparsity: Optimizing chatbot response times and adaptive language models for dynamic dialogues.
Multi-Modal Transformers: Augmented reality systems that process visual and auditory cues simultaneously, enhancing user interaction.
Energy-Efficient Transformers: Practical NLP applications on mobile devices and real-time IoT sensors for environmental monitoring.

Glossary of Key Terms
1. Transformer

A deep learning architecture that uses self-attention mechanisms to process and understand sequential data, like language, efficiently and with high accuracy.
2. Q, K, V Matrices

Abbreviations for Query (Q), Key (K), and Value (V) matrices, are essential for self-attention in transformers. These matrices enable the model to weigh relationships between tokens:

Query (Q): Represents the token’s “request” for information.
Key (K): Represents what each token “offers” in response.
Value (V): The actual information carried forward.

1. Self-Attention
A mechanism that allows each token in a sequence to weigh the importance of all other tokens, enabling the model to understand context and relationships without regard to sequence position.

2. Multi-Head Attention
A technique where self-attention is applied across multiple heads, each capturing different types of relationships or patterns within the input sequence.

3. Softmax
A function that converts a set of values into a probability distribution, is used to determine the importance of each token relative to others.

4. Embedding
A dense vector representation of tokens, capturing semantic meaning. Tokens with similar meanings have embeddings that are close in the high-dimensional space.

5. Positional Encoding
A vector is added to each token’s embedding to convey its position in a sequence, allowing the transformer to understand order without relying on recurrence.

6. Sparse Attention
An efficient form of attention that focuses only on certain relevant tokens in the sequence, reducing computational cost for long sequences.

7. Linear Transformer
A transformer variant that reduces self-attention’s complexity from quadratic to linear, enabling it to handle very long sequences more efficiently.

8. Dynamic Sparsity
A method that activates only the most relevant neurons in a layer, optimizing efficiency by selectively reducing computations during model inference.

9. Feed-Forward Neural Network (FFN)
A fully connected neural layer within the transformer, is applied after attention to refine token representations and add non-linear transformations.

10. Residual Connection
A shortcut that connects the input of a layer to its output, stabilizing training by allowing the model to retain information across layers.

11. Layer Normalization
A normalization technique is applied to each layer’s output to improve model stability and gradient flow during training.

12. FlashAttention
An optimized attention mechanism that speeds up computation by organizing data movement on GPUs, is useful for training large models efficiently.

13. Multi-Modal Transformers
Transformers that integrate various data types (e.g., text, images) within one model, essential for tasks involving multiple inputs, like vision-language tasks.

Conclusion
The transformer architecture has fundamentally reshaped NLP, igniting a new era in AI with transformative impacts across industries. Yet, as we move forward, the path is filled with promising challenges and exciting
innovations. Emerging research in sparse attention, linear transformers, and multi-modal applications suggests that the potential of transformers is far from fully realized. With refinements like hardware-optimized models

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

and energy-efficient designs, transformers are poised to power breakthroughs in real-time translation, augmented reality, autonomous systems, and beyond. As transformers continue to evolve, they will not only drive AI
advancements but also redefine how we interact with and understand the digital world, bringing us closer to the next generation of intelligent technologies.

